

LMC6042 **CMOS Dual Micropower Operational Amplifier General Description** Features

Ultra-low power consumption and low input-leakage current are the hallmarks of the LMC6042. Providing input currents of only 2 fA typical, the LMC6042 can operate from a single supply, has output swing extending to each supply rail, and an input voltage range that includes ground.

The LMC6042 is ideal for use in systems requiring ultra-low power consumption. In addition, the insensitivity to latch-up, high output drive, and output swing to ground without requiring external pull-down resistors make it ideal for singlesupply battery-powered systems.

Other applications for the LMC6042 include bar code reader amplifiers, magnetic and electric field detectors, and handheld electrometers.

This device is built with National's advanced Double-Poly Silicon-Gate CMOS process.

See the LMC6041 for a single, and the LMC6044 for a quad amplifier with these features.

- Low supply current: 10 µA/Amp (typ)
- Operates from 4.5V to 15V single supply
- Ultra low input current: 2 fA (typ)
- Rail-to-rail output swing
- Input common-mode range includes ground

Applications

- Battery monitoring and power conditioning
- Photodiode and infrared detector preamplifier
- Silicon based transducer systems
- Hand-held analytic instruments
- pH probe buffer amplifier
- Fire and smoke detection systems
- Charge amplifier for piezoelectric transducers

Connection Diagram

Low-Power Two-Op-Amp Instrumental Amplifier

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage	±Supply Voltage
Supply Voltage (V ⁺ - V ⁻)	16V
Output Short Circuit to V ⁺	(Note 12)
Output Short Circuit to V ⁻	(Note 2)
Lead Temperature	
(Soldering, 10 seconds)	260°C
Current at Input Pin	±5 mA
Current at Output Pin	±18 mA
Current at Power Supply Pin	35 mA
Power Dissipation	(Note 3)
Storage Temperature Range	–65°C to +150°C

Electrical Characteristics

Junction Temperature (Note 3) $110^{\circ}C$ ESD Tolerance (Note 4)500VVoltage at Input/Output Pin $(V^+) + 0.3V, (V^-) - 0.3V$

Operating Ratings

Temperature Range	
LMC6042AI, LMC6042I	$-40^{\circ}C \le T_{J} \le$
	+85°C
Supply Voltage	$4.5V \leq V^+ \leq 15.5V$
Power Dissipation	(Note 10)
Thermal Resistance (θ_{JA}), (Note 11)	
8-Pin DIP	101°C/W
8-Pin SO	165°C/W

Unless otherwise spec ified, all limits guaranteed for $T_A = T_J = 25$ °C. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = V⁺/2 and R_L > 1M unless otherwise specified.

				Typical	LMC6042AI	LMC6042I	Units
Symbol	Parameter	Conditions		(Note 5)	Limit	Limit	(Limit)
					(Note 6)	(Note 6)	
Vos	Input Offset Voltage			1	3	6	mV
					3.3	6.3	Max
TCV _{os}	Input Offset Voltage			1.3			µV/°C
	Average Drift						
I _B	Input Bias Current			0.002	4	4	pA (Max)
l _{os}	Input Offset Current			0.001	2	2	pA (Max)
R _{IN}	Input Resistance			>10			$Tera\Omega$
CMRR	Common Mode	$0V \le V_{CM} \le 12.0V$		75	68	62	dB
	Rejection Ratio	V ⁺ = 15V			66	60	Min
+PSRR	Positive Power Supply	$5V \le V^+ \le 15V$		75	68	62	dB
	Rejection Ratio	$V_{O} = 2.5V$			66	60	Min
-PSRR	Negative Power Supply	$0V \le V^- \le -10V$		94	84	74	dB
	Rejection Ratio	$V_{O} = 2.5V$			83	73	Min
CMR	Input Common-Mode	V ⁺ = 5V and 15V		-0.4	-0.1	-0.1	V
	Voltage Range	For CMRR ≥ 50 dB			0	0	Max
				V+-1.9V	V+- 2.3V	V+- 2.3V	V
					V ⁺ - 2.5V	V ⁺ - 2.4V	Min
A _V	Large Signal	$R_L = 100 \text{ k}\Omega \text{ (Note 7)}$	Sourcing	1000	400	300	V/mV
	Voltage Gain				300	200	Min
			Sinking	500	180	90	V/mV
					120	70	Min
		$R_L = 25 \text{ k}\Omega \text{ (Note 7)}$	Sourcing	1000	200	100	V/mV
					160	80	Min
			Sinking	250	100	50	V/mV
					60	40	Min

Electrical Characteristics (Continued)

Unless otherwise spec ified, all limits guaranteed for $T_A = T_J = 25^{\circ}$ C. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = V⁺/2 and R_L > 1M unless otherwise specified.

			Typical	LMC6042AI	LMC6042I	Units
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	(Limit)
				(Note 6)	(Note 6)	
Vo	Output Swing	V ⁺ = 5V	4.987	4.970	4.940	V
		$R_{L} = 100 \text{ k}\Omega \text{ to } V^{+}/2$		4.950	4.910	Min
			0.004	0.030	0.060	V
				0.050	0.090	Max
		V ⁺ = 5V	4.980	4.920	4.870	V
		$R_L = 25 \text{ k}\Omega$ to V ⁺ /2		4.870	4.820	Min
			0.010	0.080	0.130	V
				0.130	0.180	Max
		V ⁺ = 15V	14.970	14.920	14.880	V
		$R_{L} = 100 \text{ k}\Omega \text{ to } V^{+}/2$		14.880	14.820	Min
			0.007	0.030	0.060	V
				0.050	0.090	Max
		V ⁺ = 15V	14.950	14.900	14.850	V
		$R_L = 25 \text{ k}\Omega$ to V ⁺ /2		14.850	14.800	Min
			0.022	0.100	0.150	V
				0.150	0.200	Max
I _{sc}	Output Current	Sourcing, $V_O = 0V$	22	16	13	mA
	V ⁺ = 5V			10	8	Min
		Sinking, $V_O = 5V$	21	16	13	mA
				8	8	Min
I _{sc}	Output Current	Sourcing, $V_O = 0V$	40	15	15	mA
	V ⁺ = 15V			10	10	Min
		Sinking, V _O = 13V	39	24	21	mA
		(Note 12)		8	8	Min
Is	Supply Current	Both Amplifiers	20	34	45	μΑ
		V _O = 1.5V		39	50	Max
		Both Amplifiers	26	44	56	μΑ
		V ⁺ = 15V		51	65	Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = V⁺/2 and R_L > 1M unless otherwise specified.

			Тур	LMC6042AI	LMC6042I	Units
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	(Limit)
				(Note 6)	(Note 6)	
SR	Slew Rate	(Note 8)	0.02	0.015	0.010	V/µs
				0.010	0.007	Min
GBW	Gain-Bandwidth Product		100			kHz
φ _m	Phase Margin		60			Deg
	Amp-to-Amp Isolation	(Note 9)	115			dB
e _n	Input-Referred	f = 1 kHz	83			nV/v∕ Hz
	Voltage Noise					,
i _n	Input-Referred	f = 1 kHz	0.0002			pA/v∕ Hz
	Current Noise					•

LMC6042

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_A = T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = V⁺/2 and R_L > 1M unless otherwise specified.

			Тур	LMC6042AI	LMC6042I	Units
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	(Limit)
				(Note 6)	(Note 6)	
T.H.D.	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_V = -5$				
		$R_L = 100 \text{ k}\Omega, V_O = 2 \text{ V}_{PP}$	0.01			%
		±5V Supply				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Applies to both single-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 110°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

Note 3: The maximum power dissipation is a function of $T_{J(Max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(Max)} - T_A)/\theta_{JA}$.

Note 4: Human body model, 1.5 k Ω in series with 100 pF.

Note 5: Typical values represent the most likely parametric norm.

Note 6: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).

Note 7: V⁺ = 15V, V_{CM} = 7.5V and R_L connected to 7.5V. For Sourcing tests, 7.5V \leq V_O \leq 11.5V. For Sinking tests, 2.5V \leq V_O \leq 7.5V.

Note 8: V⁺ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.

Note 9: Input referred V⁺ = 15V and R_L = 100 k Ω connected to V⁺/2. Each amp excited in turn with 100 Hz to produce V_O = 12 V_{PP}.

Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance θ_{JA} with $P_D = (T_J - T_A)/\theta_{JA}$.

Note 11: All numbers apply for packages soldered directly into a PC board.

Note 12: Do not connect output to V⁺when V⁺ is greater than 13V or reliability may be adversely affected.

Typical Performance Characteristics

 $V_{S} = \pm 7.5 V$, $T_{A} = 25^{\circ}C$ unless otherwise specified

01113720

Typical Single-Supply Applications (V⁺ = 5.0 V_{DC}) (Continued)

FIGURE 11. 1 Hz Square Wave Oscillator

FIGURE 12. AC Coupled Power Amplifier

Ordering Information

Backago	Temperature Range	NSC	Transport Media	
Гаскаус	Industrial	Drawing		
	–40°C to +85°C			
8-Pin	LMC6042AIM, LMC6042AIMX	M08A	Rail	
Small Outline	LMC6042IM, LMC6042IMX		Tape and Reel	
8-Pin	LMC6042AIN	N08E	Rail	
Molded DIP	LMC6042IN			

